RSL genes are sufficient for rhizoid system development in early diverging land plants.

نویسندگان

  • Geupil Jang
  • Keke Yi
  • Nuno D Pires
  • Benoît Menand
  • Liam Dolan
چکیده

Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development of specialized tip-growing filamentous rhizoids in early diverging groups of land plants was crucial for the establishment of the first continental vegetation sometime before

INTRODUCTION The development of specialized tip-growing filamentous rhizoids in early diverging groups of land plants was crucial for the establishment of the first continental vegetation sometime before 465 million years ago (Kenrick and Crane, 1997; Bateman et al., 1998; Wellman and Gray, 2000; Gensel and Edwards, 2001; Wellman et al., 2003; Raven and Crane, 2007). The algal ancestors of the ...

متن کامل

Conserved regulatory mechanism controls the development of cells with rooting functions in land plants.

Land plants develop filamentous cells-root hairs, rhizoids, and caulonemata-at the interface with the soil. Members of the group XI basic helix-loop-helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxi...

متن کامل

The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants

To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of...

متن کامل

RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants

The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may ...

متن کامل

Recruitment and remodeling of an ancient gene regulatory network during land plant evolution.

The evolution of multicellular organisms was made possible by the evolution of underlying gene regulatory networks. In animals, the core of gene regulatory networks consists of kernels, stable subnetworks of transcription factors that are highly conserved in distantly related species. However, in plants it is not clear when and how kernels evolved. We show here that RSL (ROOT HAIR DEFECTIVE SIX...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 11  شماره 

صفحات  -

تاریخ انتشار 2011